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 Abstract - Underwater spherical robots are flexible and 

often perform tasks in narrow, dark and complex 

environments. The artificial lateral line system inspired by 

the lateral line system of fish can recognize obstacles. 

However, currently, the recognition of obstacles under the 

artificial lateral line system is mainly based on the vibration 

characteristics of obstacles. Based on the blank recognition 

of static obstacles, this paper analyzes the feasibility of 

recognition static obstacles. A polynomial regression model 

is proposed to detect static obstacles (walls) by moving 

robots. Finally, the effectiveness of obstacle recognition is 

verified by experiment and simulation.   

 Index Terms - Underwater pressure characteristics, Static 

obstacle recognition, Underwater spherical robot. 

I.  INTRODUCTION 

 With the continuous development of science and 

technology, the exploitation of Marine resources becomes more 

and more important and urgent [1,2]. To explore the ocean, it is 

necessary to develop appropriate underwater exploration 

equipment and related technology. The positioning technology 

of underwater robot is the most critical underwater detection 

technology. How to accurately locate in the complex marine 

environment is an urgent problem to be solved. Currently, most 

autonomous underwater vehicles (AUVs) deploy radar, lasers 

and sonar to detect obstacles [3,4]. These detection methods 

have been shown to be effective under ideal environments. 

However, they do not work well under extreme environments, 

such as cramped, cloudy and dark spaces. In order to improve 

the stability and automation of AUVs in extreme environments, 

a new underwater positioning technology that is not affected by 

complex environments is needed. 

Biological lateral line system has super sensitive flow 

sensing ability and can accurately perceive the flow disturbance 

around. Thus, by sensing of the lateral line system, fish carry 

out corresponding behaviors such as aggregation, rheology, and 

obstacle avoidance [5]. The lateral line system consists of 

hundreds of sensory units, which can be divided into two 

categories: Sympathetic Nervous System (SNs) and central 

nervous system (CNs). These features of the system have 

inspired researchers to develop artificial lateral line systems 

(ALL). Artificial lateral line systems based on pressure or 

current velocity sensors have been developed over the past few 

decades. These systems are used to sense near-field 

hydrodynamic fluctuations and are applied for underwater 

target and current velocity detection. In addition, passive 

sensing is more popular than traditional detection technologies 

such as sonar when ecological conservation is considered.  

The research of ALL system mainly focuses on ocean 

current and eddy current detection, attitude control and dipole 

positioning [6-8]. A large number of experiments have proved 

that ALLS can predict the current environments. Tuhtan et al. 

measured river ecosystems with ALLS. The results show that 

compared with traditional methods, ALLS has higher accuracy 

due to the reduction of measurement deviation and model 

dimension [6]. Xie et al. proposed a robotic box fish equipped 

with ALLS, which was used to detect Karman vortex street 

generated by tail fin oscillation of another robotic fish 

upstream. The relative vertical distance, relative yaw, pitch and 

roll angle between two adjacent robotic fish was obtained, and 

the attitude maintenance of the robot is realized. [7,8].  

Target detection and recognition based on LLS sensor has 

been widely studied. Experimental and theoretical studies 

mostly use vibration or translational ball as stimulus. This is 

because, in practice, the location of some vibration targets can 

be simplified to the location of dipole sources. The flow field 

produced by dipole vibrations is approximately representative 

of the flow field produced by fins or insects, as well as the 

artificially swinging fins or propellers of underwater vehicles. 

Abdulsada et al. developed an ALL system with a sensor array 

for locating dipole sources in two-dimensional (2d) space [9]. 

Jiang et al. developed an ALLS that detects both pressure and 

velocity to locate the dipole [10]. Yang et al. proposed an ALL 

system consisting of 15 current velocity sensors placed laterally 

on a cylindrical platform for locating vibration sources in three-

dimensional space [11]. Zheng et al. developed a cross-shaped 

ALL with 9 pressure sensors for 3D dipole positioning [12]. Xu 

et al. propose an improved distance evaluation method to 

evaluate the contribution of each sensor and discuss artificial 

lateral line systems optimization based on the optimal weight 

analysis algorithm [13]. 



In most studies on underwater target detection and location, 

such as dipole detection, bionic fish tail fin detection, 

cylindrical turbulence detection, etc., fluctuating water flow is 

generated by the target. However, in the real nature, there are 

still some stationary obstacles that do not produce water flow 

fluctuations. Avoiding these obstacles is very important in robot 

movement [14-17]. In addition, to obtain prediction models, 

most studies obtain flow field data through steady-state 

simulation. However, the movement of the robot is continuous. 

Therefore, dynamic simulation is necessary, and more data can 

be obtained at the same time. Moreover, the simulation data 

should stand up to experimental tests.  

This paper analyzes the pressure characteristics of static 

obstacles (such as walls) around the robot during its movement. 

Data fitting was carried out by polynomial regression to 

evaluate the perception ability of the underwater vehicle to the 

fixed obstacles. The effectiveness of the proposed detection 

method is verified by experiments and numerical analysis. In 

this paper, a creative research is made on the recognition of 

stationary obstacles such as walls.  

The rest of this article is organized as follows. The section

Ⅱ introduces the experimental platform and sensing algorithm 

are proposed in section Ⅲ. In the section IV, the experimental 

results and discussion of wall surface localization are 

introduced. A summary of the concluding remarks is contained 

in section V. 

II.  EXPERIMENTAL PLATFORM 

A. Platform Description 

 Experiments and verification of the robot were carried out 

through our experimental platform. The experimental platform 

consists of a bionic amphibious robot and movable sliding rail 

system. The bionic amphibious robot, shown in Fig. 1, is similar 

in shape to a turtle and consists of a hemispherical body and 

four legs. The hemispherical body contains the robot's circuitry 

and control systems. The four legs are flexible and driven by 

propellers. The robot weighs 6.6kg. 

 

 
Fig. 1 The bionic amphibious robot equipped with artificial lateral line sensor 

system. 

 

The movable sliding rail system consists of sliding rail, 

bracket, and stepper motor drive system. The length of the slide 

rail is 2 meters, and the sliding bracket is fixed on it. The robot 

is fixed on the sliding bracket and is drawn by the stepper motor 

to carry out uniform motion, as shown in Fig. 2 (a). The motor 

drive system consists of stepper motor, driver, controller, and 

switching power supply. The drive system can provide uniform 

traction from 0.01m/s to 0.3m/s. The whole driving circuit is 

shown in Fig. 2 (b). 

 

 
(a) The experimental platform 

 

 
(b) The platform-driven equipment 

Fig. 2 The slide rail and its driving equipment used in the experiment 

 

The whole system is placed in a laboratory tank. The tank 

has a length of 2.8 meters, width of 1.8 meters and depth of 1.0 

meter. The robot is immersed in water with its center located at 

0.1 meters below the surface of the water. 

B. Data Acquisition 

 

 
 

Fig. 3 The experimental scene and sensor distribution (P1-P12). 

 

In order to realize the robot's perception of underwater 

obstacles (i.e. wall surface), a sensor system is arranged around 

the robot. The sensor system consists of high-precision pressure 

Hemispherical body 

Artificial lateral line  

sensor system. 

Leg: the driving mechanism 



sensor MS5803-01BA, which is evenly distributed 2cm away 

from the lower edge of the spherical body of the robot, as shown 

in Fig. 1.  

The sensor system consists of 12 pressure sensors, whose 

distribution under water flow is shown in Fig. 3. The sensor is 

connected to the robot control panel through the chip selection 

and IIC interface. The control panel will process the collected 

data and judge the obstacles (wall surface). 

In the experiment, 12 channels of pressure value data were 

introduced successively and in turn, and the sampling time of 

each channel was 0.1s. 

III.  SIMULATION DATA AND RECOGNITION ALGORITHM 

A. Simulation Data Acquisition 

 In addition, in order to further obtain more data, a 

simulation platform is built. The Lattice Boltzmann method is 

used to simulate the dynamic motion of the robot in a long pool. 

The length of the pool is 6.5 meters, the width is 2 meters, and 

the height is 2 meters. The length of the pool ensures the 

stability and data volume of the pressure sensor sampling.  

 
Fig. 4 The schematic diagram of sensor system on robot. 

 

The sensor system is mainly composed of 90 pressure 

sensors densely arranged horizontally, as shown in Fig. 4. The 

90 pressure sensors contain all the flow information around the 

robot and the flow conduction obstacle information. In the 

simulation, the dense pressure sensors are set up in order to 

understand the pressure sensing ability of the robot more 

comprehensively. It also provides a reference for optimizing the 

layout of sensors. 

B. Verification of Simulation Data 

In order to prove the validity of simulation data, simulation 

data and experimental data are compared under the same 

conditions. The robot is located in the centre of the pool, 0.9 

meters away from the wall. Progress along the track at a speed 

of 0.1m/s in a 2.8m pool. Pressure perception data of 

experiment and simulation were collected, as shown in Fig. 5. 

It can be seen that the experimental data is similar to the 

simulation data.  

 

  
     (a)P1                                                 (b)P2 

  
     (c)P3                                                 (d)P4 

  
     (e)P5                                                 (f)P6 

  
     (g)P7                                                 (h)P8 

  
     (i)P9                                                 (j)P10 

  
     (k)P11                                                 (l)P12 

Fig. 5 The comparison of experimental results and simulation results. 

 

The experimental results show that the simulation data can 

be used to analyse the pressure characteristics of the static 

obstacle. 

C. Obstacle Recognition Algorithm 



In order to simplify the calculation process, polynomials 

are often used to fit experimental data in practical applications. 

Pressure information and obstacle information from 

experimental data and simulation data will be related by 

polynomial regression. This polynomial can be used to 

recognition the position of obstacles in experiments. 

 Under a certain moving speed of the robot, the position of 

the obstacle and the value of pressure value perceived by the 

sensor are assumed to have the following functional 

relationship. � = �(�, �) (1) 

 D represents the distance between the robot and an obstacle 

(such as a wall), and p represents the perceived pressure at the 

effective position x of pressure sensors on the robot. 

Function �(�, �) can be expanded to a polynomial in p and x 

according to Taylor's formula. 

 Take N data samples (�
 , �
), � = 1,2. . . �, the regression 

formula fitting the k-order polynomial can be expressed as: � = �� + ���� + ���� + ����� + �����+ ����� + ⋯ 
(2) 

 Root Mean Square Error (RMSE) is a measurement of the 

deviation between the observed value and the real value, and is 

often used as a standard to measure the prediction results of 

machine learning models. In practical measurements, the 

number of observations N is always finite, and the truth value 

can only be substituted by the most reliable value. When a 

quantity is measured more than once, the root mean square of 

the measurement error is taken. The smaller the value of root 

mean square, the better the fitting effect. The calculation 

method is as follows: 

����(�, �) = �1� �[��(�, �) − �(�, �)]�!

"�  (3) 

 ��(�, �)  represents the predicted result and �(�, �) 

represents the real value. 

Ⅳ. EXPERIMENT RESULTS AND DISCUSSIONS  

 In this part, firstly, the surface pressure characteristics of 

the underwater robot in the process of moving close to the 

obstacle (wall) are analyzed. Then the relationship between the 

distance between the robot and the obstacle, the pressure, and 

the sensor position is obtained by polynomial regression. 

Finally, the distance between the robot and the wall was 

predicted through simulation data and experimental data to 

analyzed the feasibility of our algorithm. 

A. Robot Surface Pressure Characteristics 

The robot moves in the channel at a speed of 0.1m/s. Fig. 

6 shows the velocity distribution of the flow field during the 

robot movement. Fig. 6 (a) shows the flow field when the robot 

is almost close to the wall (0.221m from the center to the wall), 

Fig. 6.(b) shows the flow field when the center of the robot is 

0.43m from the wall, and Fig. 6 (c) shows the robot at the center 

of the channel (0.85m from the center of the robot to the wall).  

 

 
(a)                  (b)                  (c) 

Fig. 6 Pressure distribution of robot surface at different distances from wall 

surface. (a) The robot is located in the center of the channel;(b) The robot is 
located 0.43m away from the wall;(c) The robot is located 0.221m away from 

the wall. 

 
(a) The robot is located 0.221m away from the wall 

 
(b) The robot is located 0.43m away from the wall. 

 
(c) The robot is located in the center of the channel. 

Fig. 7 Pressure distribution of robot surface at different distances from wall 
surface. 

 

It can be seen that the wall surface has an effect on the flow 

field of the robot from Fig. 6. The closer the robot is to the wall, 



the greater its motion fluctuation. In addition, the wall surface 

will also affect and attract the robot's wake. 

 

  
(a) The pressure on the bottom edge of the hemispherical robot (The curve 

colors from light to dark represents the sensor from head to tail) 

 
(b) The selected effective pressure 

Fig. 8 The pressure at the sampling points 

 

Subsequently, we drew the surface pressure distribution of 

the robot corresponding to Fig. 6, as shown in Fig. 7. Fig. 7(a) 

shows the pressure distribution when the robot is almost close 

to the wall (0.221m from the center to the wall), Fig. 7.(b) 

shows the pressure distribution when the center of the robot is 

0.43m from the wall, and Fig. 7 (c) shows the surface pressure 

of robot at the center of the channel (0.85m from the center of 

the robot to the wall). The pressure value was standardized 

according to the average underwater density, and the 

standardized result P was obtained, which was shown in Fig. 7. 

 It can be seen that as the distance from the wall decreases, 

the pressure distribution on the surface of the robot gradually 

becomes uneven, and the left and right pressure distribution are 

no longer symmetrical. 

 Then, the case is selected when the robot is 0.221m away 

from the wall surface. The pressure value of the robot around 

the bottom of the hemispherical ball is drawn, as shown in Fig. 

8(a). The pressure on the vertical axis is normalized by static 

pressure at infinite distance. The colors from light to dark show 

the pressure values from the head to the tail of the robot to meet 

the flow. It can be seen that the pressure value of the robot head 

fluctuates little, which is suitable to be used as the feature of 

obstacle prediction.  

 In addition, the pressure of the robot tail fluctuates greatly 

and is unstable. This is due to the disturbance of tail turbulence 

during robot movement. Therefore, we choose the symmetrical 

sensor of the robot head part as the basis for obstacle 

recognition. Fig. 8 (b) shows the pressure variation values of 

some points on the head of robot and their symmetric points. 

B. Recognition Accuracy 

According to the analysis in the above section, the pressure 

difference between the two sides of the robot can represent the 

pressure characteristics when the robot is close to the wall. In 

polynomial regression, the difference of pressure values on 

bilateral symmetry of the robot is used as p input. Sensor 

placement points are selected from the robot head with 

prominent features (from 1 to 8). These points are labeled x in 

polynomial regression. The distance from the wall is the 

predicted quantity D. In order to facilitate calculation, all 

variables p, x and D are normalized to the interval [-0.5, 0.5]. 

And then we do second-order polynomial regression. The 

regression model is assumed to be: � = �� + ���� + ���� + ����� + �����+ ����� 
(4) 

 Through the regression algorithm, the corresponding 

coefficients of the polynomial are obtained, as shown in Table 

1. Fig. 9 shows the regression surface and sampling points. It 

can be seen that the regression surface fits the sampling points 

well. 

 
TABLE I 

THE SECOND-ORDER POLYNOMIAL REGRESSION PARAMETER VALUES 

Parameter Value Parameter Value �� 0.15267994 ��� 2.01990463 ��� -1.85843478 ��� 0.14216714 ��� -2.23202503 ��� 2.93965213 

 

 
Fig. 9 The second order polynomial regression fitting surface and sampling 

point 

 

 The average error obtained by fitting 1575 sampling points 

is 0.189832. The fitting results are within the acceptable error 

range. In order to further improve the fitting accuracy, a third 

order polynomial model is established. The third-order 

polynomial is shown in formula 5. 

 The third-order polynomial is fitted and its coefficients are 

shown in Table 2. The fitting surfaces and sampling points are 

shown in Fig. 10. 



� = �� + ���� + ���� + ����� + �����+ ����� + ����� + �����+ ������ + ��#��� 

(5) 

 
TABLE Ⅱ 

THE THIRD-ORDER POLYNOMIAL REGRESSION PARAMETER VALUES 

Parameter Value Parameter Value �� 0.25385269 ��� 5.83977109 ��� -3.22892112 ��� 2.61518414 ��� -2.80766451 ��� 3.55348444 ��� 3.06678921 ��� -6.16690217 ��� 0.48142837 ��# 1.77806528 

 

 
Fig. 10 The third order polynomial regression fitting surface and sampling 

point 

 

 Through the same sampled data, the average error obtained 

by third-order polynomial regression is 0.164652. It can be seen 

that increasing the order of polynomial regression has a certain 

effect on reducing the error, and the error is also within the 

acceptable range of the prediction. 

IV.  CONCLUSION 

 This paper explores the recognition of static obstacles 

through the artificial lateral line system established by the 

pressure sensor. Firstly, the underwater pressure characteristics 

of an underwater moving robot near a static obstacle (such as a 

wall) are analyzed by simulation and experiment. Based on the 

analysis of pressure characteristics, the principle and feasibility 

of sensing static obstacles are obtained. Then a polynomial 

regression model is established to analyze a large number of 

sampling points. The second and third order regression models 

can predict the distance between the robot and the wall well. 

This paper presents a new idea and scheme in static obstacle 

recognition. 
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